THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2021) Suggested Solution of Test 1

If you find any errors or typos, please email me at yzwang@math.cuhk.edu.hk

- 1. (21 points) (a) State the Archimedean property;
 - (b) State the definition of $\sup S$ for a non-empty subset of \mathbb{R} ;
 - (c) State the completeness of \mathbb{R} ;

- (a) The set of natural number \mathbb{N} is unbounded.
- (b) Given a non-empty subset $S \subset \mathbb{R}$. A real number $u = \sup S$ if $s \leq u$ for any $s \in S$ and $s \leq v$ for any $s \in S$ implies $v \geq u$.
- (c) For any non-empty subset $S \subset \mathbb{R}$ which is bounded from above, sup S exists.

- 2. (25 points) Let A and B be two bounded subset of \mathbb{R} . Define $A + B = \{a + b : a \in A\}$ $A, b \in B$.
 - (a) Show that both $\sup(A + B)$ and $\inf(A + B)$ exist;
 - (b) Show that

$$\sup(A+B) = \sup A + \sup B$$
, and $\inf(A+B) = \inf A + \inf B$.

(a) Since A, B are bounded, there exist sup A, sup B, inf A, inf $B \in \mathbb{R}$ such that for any $a \in A$ and $b \in B$,

$$\inf A \le a \le \sup A, \quad \inf B \le b \le \sup B.$$

It follows that for any $x \in A + B$ where x = a + b for some $a \in A$ and $b \in B$,

 $\inf A + \inf B < x < \sup A + \sup B.$

Therefore A + B is bounded. By completeness of \mathbb{R} , we have that $\sup(A + B)$ and $\inf(A+B)$ exist.

(b) From (a), we have that A + B is bounded above by $\sup A + \sup B$.

Suppose A + B is bounded above by some $u \in \mathbb{R}$. Then for any $a \in A$ and $b \in B$,

$$a+b \leq u.$$

Now fix $b_0 \in B$, we have that $a \leq u - b_0$ for any $a \in A$. Then $u - b_0$ is an upper bound of A and

$$\sup A \le u - b_0.$$

Since b_0 is arbitrarily chosen, we can conclude that $b \leq u - \sup A$ for any $b \in B$. Then $u - \sup A$ is an upper bound of B and

$$\sup B \le u - \sup A.$$

In sum, A + B is bounded above by $\sup A + \sup B$ and $\sup A + \sup B \leq u$ for any upper bound u of A + B. Therefore, $\sup A + \sup B = \sup(A + B)$.

From (a), we have that A + B is bounded blow by $\inf A + \inf B$.

Suppose A + B is bounded blow by some $v \in \mathbb{R}$. Then for any $a \in A$ and $b \in B$,

a+b > v.

Now fix $b_0 \in B$, we have that $a \ge v - b_0$ for any $a \in A$. Then $v - b_0$ is an lower bound of A and

$$\inf A \ge v - b_0.$$

Since b_0 is arbitrarily chosen, we can conclude that $b \ge v - \inf A$ for any $b \in B$. Then $v - \inf A$ is an lower bound of B and

$$\inf B \ge v - \inf A.$$

In sum, A + B is bounded below by $\inf A + \inf B$ and $\inf A + \inf B \ge v$ for any lower bound v of A + B. Therefore, $\inf A + \inf B = \inf(A + B)$.

- 3. (29 points) (a) Give the definition of $\lim_{n \to +\infty} a_n = a$;
 - (b) State the negation of $\lim_{n\to+\infty} a_n = a$;
 - (c) Determine the convergence of the sequence $\{\frac{1}{n} \frac{1}{n+1}\}_{n=1}^{\infty}$. Justify your answer.

- (a) For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n a| < \epsilon$ whenever n > N.
- (b) There exists $\epsilon_0 > 0$ such that for any $N \in \mathbb{N}$, we can find n > N such that $|a_n a| \ge \epsilon_0$.
- (c) Let $a_n = \frac{1}{n} \frac{1}{n+1}$. For any $\epsilon > 0$, we choose $N \in \mathbb{N}$ such that $N \ge \frac{1}{\sqrt{\epsilon}}$. Then for n > N, we have that

$$|a_n - 0| = \frac{1}{n(n+1)} < \frac{1}{N(N+1)} < \frac{1}{N^2} \le \epsilon.$$

Hence $\lim_{n \to +\infty} a_n = 0$.

- 4. (25 points) Suppose $\{a_n\}_{n=1}^{\infty}$ is a sequence of real number such that $\lim_{n\to+\infty} a_n = a$.
 - (a) If $a_n \in (0, 1)$ for all $n \in \mathbb{N}$, show that $a \in [0, 1]$.
 - (b) Suppose that a > 0, is it true that $\lim_{n \to +\infty} a_n^{\frac{1}{n}} = 1$? If yes, prove it. Otherwise, provides a counterexample.

- (a) Suppose a < 0 or a > 1. Then there exists an $\epsilon_0 > 0$ such that $a \leq -\epsilon_0$ or $a \geq 1 + \epsilon_0$. Since $\lim_{n \to +\infty} a_n = a$, for this ϵ_0 , we can find $N_0 \in \mathbb{N}$ such that $|a_{N_0} a| < \epsilon_0$. Then $a_{N_0} \leq 0$ or $a_{N_0} \geq 1$, contradicting the condition that $a_n \in (0, 1)$ for all $n \in \mathbb{N}$. Therefore, $0 \leq a \leq 1$.
- (b) Fix $\epsilon_0 > \max(0, a 1)$.

Since $\lim_{n\to+\infty} a_n = a$, there exists $N_0 \in \mathbb{N}$ such that

$$a - \epsilon_0 < a_n < a + \epsilon_0$$

for $n > N_0$ and $a - \epsilon_0 < 1$. Let $b_n = a_n^{\frac{1}{n}}$. Then for $n > N_0$,

$$(a - \epsilon_0)^{\frac{1}{n}} < b_n < (a + \epsilon_0)^{\frac{1}{n}}$$

Since $a_n - 1 = b_n^n - 1 = (b_n - 1)(b_n^{n-1} + b_n^{n-2} + \dots + b_n + 1)$, we have that for $n > N_0$,

$$|b_n - 1| = \frac{|a_n - 1|}{|b_n^{n-1} + b_n^{n-2} + \dots + b_n + 1|} < \frac{|a_n| + 1}{n(a - \epsilon_0)^{\frac{n-1}{n}}} < \frac{a + \epsilon_0 + 1}{a - \epsilon_0} \cdot \frac{1}{n}.$$

By Theorem 1.1 in quick note of Week 3, since $\lim_{n\to+\infty} \frac{1}{n} = 0$, we have that

$$\lim_{n \to +\infty} a_n^{\frac{1}{n}} = \lim_{n \to +\infty} b_n = 1.$$