THE CHINESE UNIVERSITY OF HONG KONG Department of Mathematics MATH2050A Mathematical Analysis I (Fall 2021) Suggested Solution of Test 1

If you find any errors or typos, please email me at yzwang@math.cuhk.edu.hk

- 1. (21 points) (a) State the Archimedean property;
	- (b) State the definition of sup S for a non-empty subset of \mathbb{R} ;
	- (c) State the completeness of \mathbb{R} ;

Solution:

- (a) The set of natural number N is unbounded.
- (b) Given a non-empty subset $S \subset \mathbb{R}$. A real number $u = \sup S$ if $s \leq u$ for any $s \in S$ and $s \le v$ for any $s \in S$ implies $v \ge u$.
- (c) For any non-empty subset $S \subset \mathbb{R}$ which is bounded from above, sup S exists.
- 2. (25 points) Let A and B be two bounded subset of R. Define $A + B = \{a + b : a \in$ $A, b \in B$.
	- (a) Show that both $\sup(A + B)$ and $\inf(A + B)$ exist;
	- (b) Show that

 $\sup(A + B) = \sup A + \sup B$, and $\inf(A + B) = \inf A + \inf B$.

Solution:

(a) Since A, B are bounded, there exist $\sup A$, $\sup B$, $\inf A$, $\inf B \in \mathbb{R}$ such that for any $a \in A$ and $b \in B$,

inf $A \le a \le \sup A$, inf $B \le b \le \sup B$.

It follows that for any $x \in A + B$ where $x = a + b$ for some $a \in A$ and $b \in B$,

 $\inf A + \inf B \leq x \leq \sup A + \sup B$.

Therefore $A + B$ is bounded. By completeness of \mathbb{R} , we have that $\sup(A + B)$ and $\inf(A + B)$ exist.

(b) From (a), we have that $A + B$ is bounded above by $\sup A + \sup B$.

Suppose $A + B$ is bounded above by some $u \in \mathbb{R}$. Then for any $a \in A$ and $b \in B$,

$$
a+b \le u.
$$

Now fix $b_0 \in B$, we have that $a \leq u - b_0$ for any $a \in A$. Then $u - b_0$ is an upper bound of A and

 $\sup A \leq u - b_0.$

Since b_0 is arbitrarily chosen, we can conclude that $b \leq u - \sup A$ for any $b \in B$. Then $u - \sup A$ is an upper bound of B and

$$
\sup B \le u - \sup A.
$$

In sum, $A + B$ is bounded above by sup $A + \sup B$ and $\sup A + \sup B \le u$ for any upper bound u of $A + B$. Therefore, $\sup A + \sup B = \sup (A + B)$.

From (a), we have that $A + B$ is bounded blow by inf $A + \inf B$.

Suppose $A + B$ is bounded blow by some $v \in \mathbb{R}$. Then for any $a \in A$ and $b \in B$,

3

 $a + b > v$.

Now fix $b_0 \in B$, we have that $a \ge v - b_0$ for any $a \in A$. Then $v - b_0$ is an lower bound of A and

$$
\inf A \ge v - b_0.
$$

Since b_0 is arbitrarily chosen, we can conclude that $b \ge v - \inf A$ for any $b \in B$. Then $v - \inf A$ is an lower bound of B and

$$
\inf B \ge v - \inf A.
$$

In sum, $A + B$ is bounded below by $\inf A + \inf B$ and $\inf A + \inf B \ge v$ for any lower bound v of $A + B$. Therefore, inf $A + \inf B = \inf(A + B)$.

- 3. (29 points) (a) Give the definition of $\lim_{n\to+\infty} a_n = a$;
	- (b) State the negation of $\lim_{n\to+\infty} a_n = a$;
	- (c) Determine the convergence of the sequence $\{\frac{1}{n} \frac{1}{n+1}\}_{n=1}^{\infty}$. Justify your answer.

Solution:

- (a) For any $\epsilon > 0$, there exists $N \in \mathbb{N}$ such that $|a_n a| < \epsilon$ whenever $n > N$.
- (b) There exists $\epsilon_0 > 0$ such that for any $N \in \mathbb{N}$, we can find $n > N$ such that $|a_n - a| \geq \epsilon_0.$
- (c) Let $a_n = \frac{1}{n} \frac{1}{n+1}$. For any $\epsilon > 0$, we choose $N \in \mathbb{N}$ such that $N \geq \frac{1}{\sqrt{6}}$ $\frac{1}{\epsilon}$. Then for $n > N$, we have that

$$
|a_n - 0| = \frac{1}{n(n+1)} < \frac{1}{N(N+1)} < \frac{1}{N^2} \le \epsilon.
$$

Hence $\lim_{n\to+\infty} a_n = 0$.

- 4. (25 points) Suppose ${a_n}_{n=1}^{\infty}$ is a sequence of real number such that $\lim_{n\to+\infty} a_n = a$.
	- (a) If $a_n \in (0,1)$ for all $n \in \mathbb{N}$, show that $a \in [0,1]$.
	- (b) Suppose that $a > 0$, is it true that $\lim_{n \to +\infty} a_n^{\frac{1}{n}} = 1$? If yes, prove it. Otherwise, provides a counterexample.

Solution:

- (a) Suppose $a < 0$ or $a > 1$. Then there exists an $\epsilon_0 > 0$ such that $a \le -\epsilon_0$ or $a \geq 1 + \epsilon_0$. Since $\lim_{n \to +\infty} a_n = a$, for this ϵ_0 , we can find $N_0 \in \mathbb{N}$ such that $|a_{N_0} - a| < \epsilon_0$. Then $a_{N_0} \leq 0$ or $a_{N_0} \geq 1$, contradicting the condition that $a_n \in (0,1)$ for all $n \in \mathbb{N}$. Therefore, $0 \le a \le 1$.
- (b) Fix $\epsilon_0 > \max(0, a 1)$.

Since $\lim_{n\to+\infty} a_n = a$, there exists $N_0 \in \mathbb{N}$ such that

$$
a - \epsilon_0 < a_n < a + \epsilon_0
$$

for $n > N_0$ and $a - \epsilon_0 < 1$.

Let $b_n = a_n^{\frac{1}{n}}$. Then for $n > N_0$,

$$
(a-\epsilon_0)^{\frac{1}{n}} < b_n < (a+\epsilon_0)^{\frac{1}{n}}.
$$

Since $a_n - 1 = b_n^n - 1 = (b_n - 1)(b_n^{n-1} + b_n^{n-2} + \cdots + b_n + 1)$, we have that for $n > N_0$

$$
|b_n-1|=\frac{|a_n-1|}{|b_n^{n-1}+b_n^{n-2}+\cdots+b_n+1|}<\frac{|a_n|+1}{n(a-\epsilon_0)^{\frac{n-1}{n}}}<\frac{a+\epsilon_0+1}{a-\epsilon_0}\cdot\frac{1}{n}.
$$

By Theorem 1.1 in quick note of Week 3, since $\lim_{n\to+\infty}\frac{1}{n}=0$, we have that

$$
\lim_{n \to +\infty} a_n^{\frac{1}{n}} = \lim_{n \to +\infty} b_n = 1.
$$